If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+9z+5=0
a = 4; b = 9; c = +5;
Δ = b2-4ac
Δ = 92-4·4·5
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1}{2*4}=\frac{-10}{8} =-1+1/4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1}{2*4}=\frac{-8}{8} =-1 $
| v+28=85 | | 4x-28=8 | | y/3=5=10 | | y/5+5=-10 | | f3= 4 | | 12=7=5y | | -89=5x+6 | | f3= 4f= | | 6x+54=9x+27 | | 29=5t-6 | | 14x+5=-5x-6(-3x+15)=5 | | 14x+18=22x+8 | | 4x^2+9x=47 | | X+0.2+x=6.00 | | q^2-80q+500=0 | | 4m=20= | | 3/2(x-3)=-5 | | 9|x+4|=54 | | 24=v/3+6 | | 3x(2x)+1=25 | | 3/2(x-3)=0 | | 6v-3v=3 | | s/5{+125=2225 | | 35=3w+4w | | X+(x•3)+(x•3-23)=180 | | 14/x=4/6 | | u+3.8=3.71 | | 3(x+-4)=2x+6 | | 4m=9+5m | | 10−2t=-t | | -34=-x/9 | | -38=-x/6 |